Java学习-多线程-02

Java 学习-多线程-02

1.为什么使用线程池,解释一下线程池参数

为什么使用线程池:

  1. 创建和销毁现场需要消耗系统资源,线程池可以复用已创建的线程
  2. 控制并发的数量。并发数量过多,可能会消耗过的的资源,从而造成服务器崩溃。(主要原因)
  3. 可以对线程做同一管理。

参数:
Java 中的线程池顶层接口是 Executor接口,ThreadPoolExecutor是这个接口的实现类。
ThreadPoolExecutor一共由四个构造方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// 五个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue)

// 六个参数的构造函数-1
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory)

// 六个参数的构造函数-2
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)

// 七个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)

总共设计到 5 ~ 7 个参数,其中 5 个必要参数:

  • int corePoolSize: 该线程池中核心线程数最大值

    核心线程:线程池中有两类线程,核心线程和非核心线程。核心线程默认情况下会一直存在于线程池中,即使这个核心线程什么都不干,而非核心线程如果长时间闲置,就会被销毁。

  • int maximumPoolSize: 该线程池中线程总数最大值。

    等于核心线程数+非核心线程数。

  • int keepAliveTime: 非核心线程闲置超时时长

    非核心线程如果处于闲置状态超过该值,就会被销毁。如果设置 allowCoreThreadTimeOut(true),则会也作用于核心线程。如果非核心线程闲置超过 keepAliveTime,就会被销毁。

  • TimeUnit unit: keepAliveTime 的时间单位
    枚举类型,

    MICROSECONDS
    MILLISECONDS
    SECONDS
    MINUTES
    HOURS
    DAYS

  • BlockingQueue workQueue: 阻塞队列,维护着等待执行的 Runnable 任务对象。

常见的几个阻塞队列:

  1. LinkedBlockingQueue
    链式阻塞队列,底层数据结构是链表,默认大小是 Integer.MAX_VALUE,可以指定大小
  2. ArrayBlockingQueue
    数组阻塞队列,底层数据结构是数组,需要指定队列大小。
  3. SynchronousQueue
    同步队列,内部容量为 0,每个 put 操作必须等待一个 take 操作,反之亦然。
  4. DelayQueue
    延迟队列,该队列中的元素只有当其指定延迟的时间到了,才能狗从队列获取该元素。

2 个非必要参数:

  • ThreadFactory threadFactory:
    创建线程的工程,用于批量创建线程,统一在创建线程时设置一些参数,如是否守护线程、线程的优先级等,如果不指定,会新建一个默认的线程工厂。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
static class DefaultThreadFactory implements ThreadFactory {
// 省略属性
// 构造函数
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}

// 省略
}
  • RejectedExecutionHandler handler:
    拒绝处理策略,线程数量大于最大线程数时,会采用拒绝处理策略。四种拒绝处理策略:
  1. ThreadPoolExecutor.AbortPolicy: 默认拒绝处理策略,丢弃任务并抛出RejectedExecutionException异常。
  2. ThreadPoolExecutor.DiscardPolicy: 丢弃任务,但是不抛出异常。
  3. ThreadPoolExecutor.DiscardOldestPolicy: 丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)。
  4. ThreadPoolExecutor.CallerRunsPolicy: 由调用线程处理该任务。

2.简述线程池处理流程

处理任务的核心方法是 execute

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// JDK 1.8
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
// 1.当前线程数小于corePoolSize,则调用addWorker创建核心线程执行任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2.如果不小于corePoolSize,则将任务添加到workQueue队列。
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 2.1 如果isRunning返回false(状态检查),则remove这个任务,然后执行拒绝策略。
if (! isRunning(recheck) && remove(command))
reject(command);
// 2.2 线程池处于running状态,但是没有线程,则创建线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 3.如果放入workQueue失败,则创建非核心线程执行任务,
// 如果这时创建非核心线程失败(当前线程总数不小于maximumPoolSize时),就会执行拒绝策略。
else if (!addWorker(command, false))
reject(command);
}

ctl.get()是获取线程池状态,用 int类型表示。第二步中,入队前进行了一次 isRunning判断,入队之后,又进行了一次 isRunning判断。

为什么要二次检查线程池的状态?
在多线程的环境下,线程池的状态是时刻发生变化的。很有可能刚获取线程池状态后线程池状态就改变了。判断是否将command加入workqueue是线程池之前的状态。倘若没有二次检查,万一线程池处于非RUNNING状态(在多线程环境下很有可能发生),那么command永远不会执行。

流程总结:

  1. 线程总数量 < corePoolSize,无论线程是否空闲,都会新建一个核心线程执行任务(让核心线程数量快速达到corePoolSize,在核心线程数量 < corePoolSize时)。注意,这一步需要获得全局锁。
  2. 线程总数量 >= corePoolSize时,新来的线程任务会进入任务队列中等待,然后空闲的核心线程会依次去缓存队列中取任务来执行(体现了线程复用)。
  3. 当缓存队列满了,说明这个时候任务已经多到爆棚,需要一些“临时工”来执行这些任务了。于是会创建非核心线程去执行这个任务。注意,这一步需要获得全局锁。
  4. 缓存队列满了, 且总线程数达到了maximumPoolSize,则会采取上面提到的拒绝策略进行处理。

整个过程如图所示:


3.线程池中阻塞队列的作用,为什么时先添加队列而不是先创建最大线程数?

  • 作用:
    一般队列只能保证有限长度的缓冲区,当队列满了,就会抛出异常;阻塞队列可以通过阻塞,保存当前想继续加入的任务;当阻塞队列中没有任务时,阻塞队列获取线程,使得核心线程进去wait状态,释放cpu资源。
  • 为什么先添加队列而不是先创建最大线程数?
    在创建新线程的时候,是要获取全局锁的,这个时候其他的就得阻塞,影响了整体效率。

4.线程池中线程复用的原理

ThreadPoolExecutor在创建线程时,会将线程封装成工作线程worker,并放入工作线程组中,然后这个worker反复从阻塞队列中拿任务去执行。

这里的 addWorker方法是在上面提到的 execute方法里面调用的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// ThreadPoolExecutor.addWorker方法源码上半部分
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);

// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;

for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
// 1.如果core是ture,证明需要创建的线程为核心线程,则先判断当前线程是否大于核心线程
// 如果core是false,证明需要创建的是非核心线程,则先判断当前线程数是否大于总线程数
// 如果不小于,则返回false
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}

上半部分主要是判断线程数量是否超出阈值,超过了就返回false。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  // ThreadPoolExecutor.addWorker方法源码下半部分
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 1.创建一个worker对象
w = new Worker(firstTask);
// 2.实例化一个Thread对象
final Thread t = w.thread;
if (t != null) {
// 3.线程池全局锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());

if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 4.启动这个线程
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}

创建 worker对象,并初始化一个 Thread对象,然后启动这个线程对象。

Worker类部分源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// Worker类部分源码
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
final Thread thread;
Runnable firstTask;

Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}

public void run() {
runWorker(this);
}
//其余代码略...
}

Worker类实现了 Runnable接口,所以 Worker也是一个线程任务。在构造方法中,创建了一个线程,线程的任务就是自己。故 addWorker方法调用 addWorker方法源码下半部分中的第4步 t.start,会触发 Worker类的 run方法被JVM调用。

runWorker的逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Worker.runWorker方法源代码
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 1.线程启动之后,通过unlock方法释放锁
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 2.Worker执行firstTask或从workQueue中获取任务,如果getTask方法不返回null,循环不退出
while (task != null || (task = getTask()) != null) {
// 2.1进行加锁操作,保证thread不被其他线程中断(除非线程池被中断)
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 2.2检查线程池状态,倘若线程池处于中断状态,当前线程将中断。
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// 2.3执行beforeExecute
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 2.4执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
// 2.5执行afterExecute方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
// 2.6解锁操作
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}

首先去执行创建这个 worker时就有的任务,当执行完这个任务后,worker的生命周期并没有结束,在 while循环中,worker会不断地调用 getTask方法从阻塞队列中获取任务然后调用task.run()执行任务,从而达到复用线程的目的。只要 getTask方法不返回 null,此线程就不会退出。

当然,核心线程池中创建的线程想要拿到阻塞队列中的任务,先要判断线程池的状态,如果STOP或者TERMINATED,返回 null

getTask方法的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// Worker.getTask方法源码
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?

for (;;) {
int c = ctl.get();
int rs = runStateOf(c);

// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}

int wc = workerCountOf(c);

// Are workers subject to culling?
// 1.allowCoreThreadTimeOut变量默认是false,核心线程即使空闲也不会被销毁
// 如果为true,核心线程在keepAliveTime内仍空闲则会被销毁。
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 2.如果运行线程数超过了最大线程数,但是缓存队列已经空了,这时递减worker数量。
     // 如果有设置允许线程超时或者线程数量超过了核心线程数量,
// 并且线程在规定时间内均未poll到任务且队列为空则递减worker数量
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}

try {
// 3.如果timed为true(想想哪些情况下timed为true),则会调用workQueue的poll方法获取任务.
// 超时时间是keepAliveTime。如果超过keepAliveTime时长,
// poll返回了null,上边提到的while循序就会退出,线程也就执行完了。
// 如果timed为false(allowCoreThreadTimeOut为false
// 且wc > corePoolSize为false),则会调用workQueue的take方法阻塞在当前。
// 队列中有任务加入时,线程被唤醒,take方法返回任务,并执行。
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}

核心线程的会一直卡在workQueue.take方法,被阻塞并挂起,不会占用CPU资源,直到拿到Runnable 然后返回(当然如果allowCoreThreadTimeOut设置为true,那么核心线程就会去调用poll方法,因为poll可能会返回null,所以这时候核心线程满足超时条件也会被销毁)。

非核心线程会workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) ,如果超时还没有拿到,下一次循环判断compareAndDecrementWorkerCount就会返回null,Worker对象的run()方法循环体的判断为null,任务结束,然后线程被系统回收 。


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!